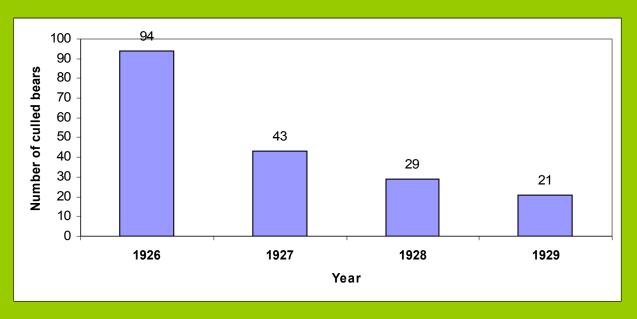


Populations.

- 1. Cantabrian
- 2. Pyrenees
- 3. Alps
- 4. Abruzzo
- 5. East Balkan
- 6. Dinaric-Pindos
- 7. Carpathian
- 8. Scandinavian
- 9. Karelian
- 10. Baltic

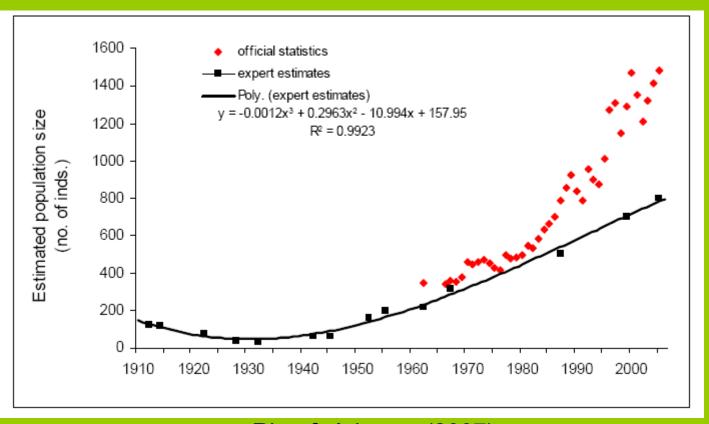
Brown bears in Europe

- formerly distributed throughout the whole continent
- extirpated from most of the distribution in Western Europe
- viable populations survived in Northeastern Europe, Scandinavia, Carpathians, Dinaric-Pindos, Rila-Rhodopes and Stara Planina Mounts.

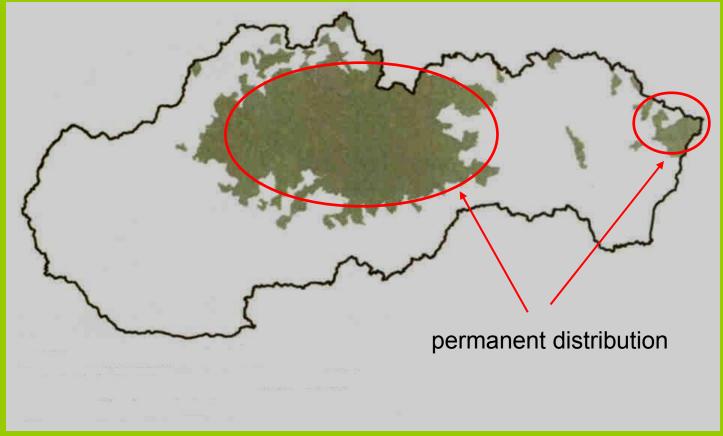


Carpathians:

- in Middle ages large continuous population
- Czech Republic last brown bear shot in 1850's
- at the end of 19th century bears were extirpated from western Slovakia
- in central Slovakia before WW1 about 120 individuals
- continuous hunting pressure and persecution led to split of population into Western and Eastern Carpathians



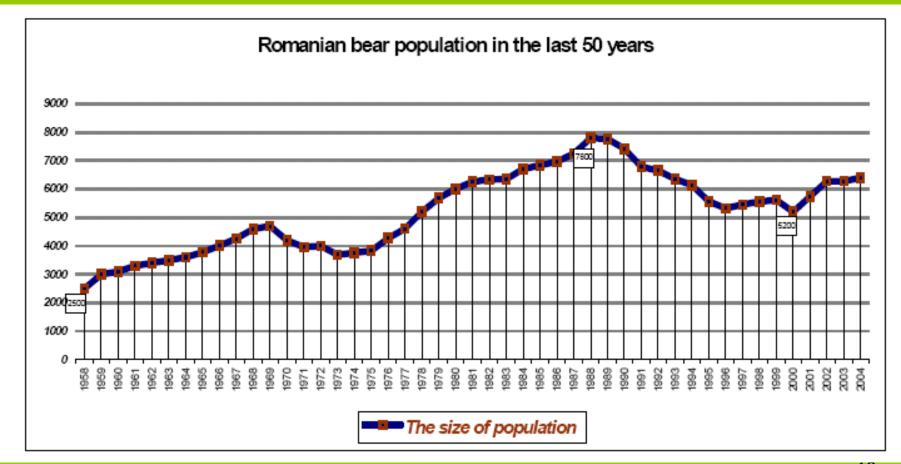
- high cull rates in 1920's
- according to Žuffa (1932) only 15–25 animals survived in Slovakia
- Tobiáš (1933) gave tree-times higher estimates


protection since 1932 – population recovery

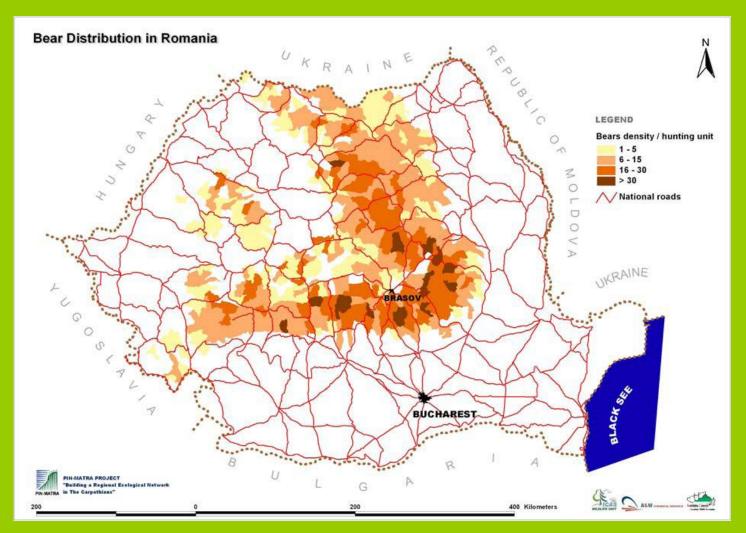
Rigg & Adamec (2007)

- present distribution of bears in Slovakia
- about 600–800 individuals

7



- few literature sources from Romania
- minimum population size (about 900 individuals) at the beginning of 1950's
- since 1953 protection, led to increase of bear numbers
- Ceausescu's era measures for population growth
- at the end of 1980's population maximum reached about 8,000 individuals



- frequent bear-human conflicts
- during 1990–1999: 119 attacks on human, 18 mortal
- at present approximately 6,000 individuals

Greece

- similar population history to Slovakia
- bears formerly occupied whole country
- during last two centuries bears survived only in northwestern and northeastern mountain ranges
- today population is recovering and the population size is estimated for 200 individuals

Brown bear distribution in Greece

13

- sampling in Greece part of the project called "Southwestern Balkan Bear Register" and assessing the impact of Egnatia highway building (Arcturos)
- laboratory analyses performed in Zvolen, Slovakia

Main goals

- assessing the population structure of bears in Carpathians
- evaluation the amount of genetic differentiation between Carpathian and Greek populations
- measuring the level of genetic diversity within studied population (affected by changes of population size in the recent history?)

- different types of biological material
- samples from culled bears, samples taken from immobilized animals, hunting trophies, museum specimens
- special group of samples non-invasive samples (hair, feces)

Slovakia

Romania

Greece

	Materia	us and	d mei	inods			
Country	Soft tissues	Bones	Hair	Feces	Blood	DNA aliquots	_

DNA extraction:

- phenol chloroform deproteinisation, ethanol precipitation
- kits for isolation (Qiagen, Macherey-Nagel)
- Chelex

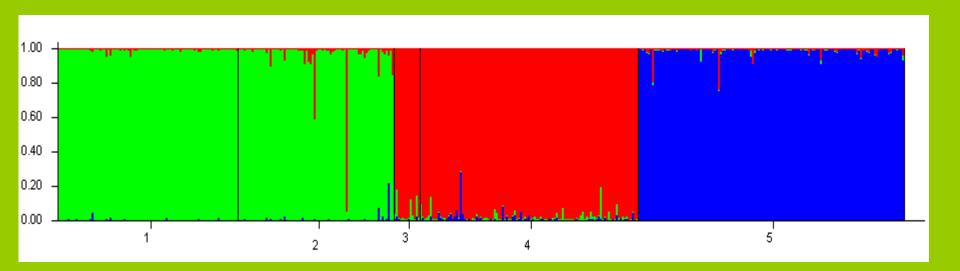
PCR amplification:

- amplification of 13 microsatellite loci
- sex specific SRY marker
- primers amplified in two multiplexes

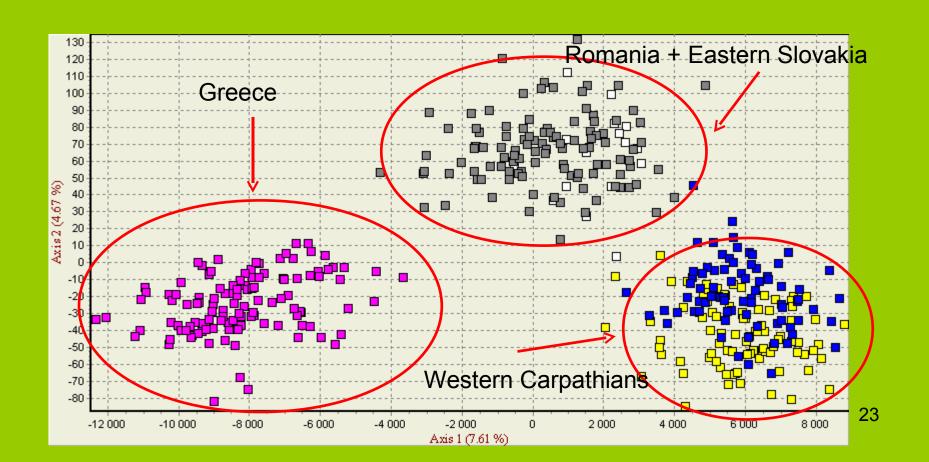
Fragment analysis:

ABI 3130 automated genetic analyzer (Applied Biosystems)

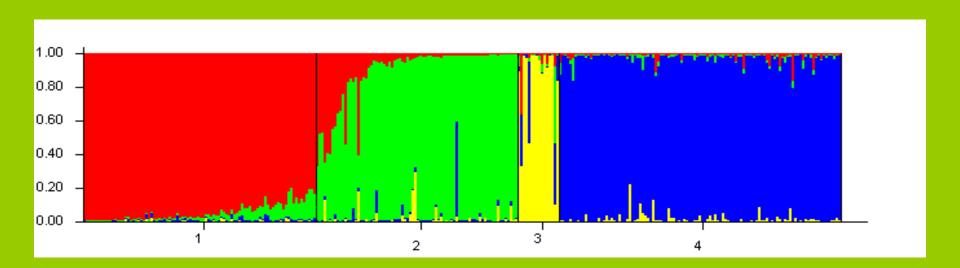
Microsatellite markers used in this study

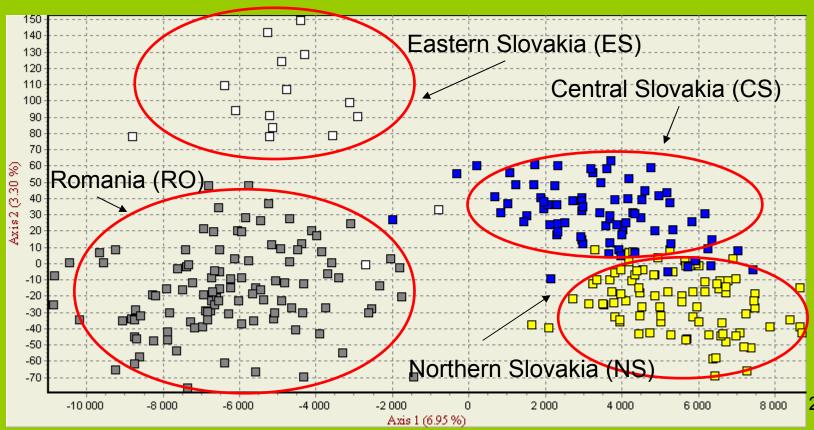

	Sequence	Annealing temp. (°C)	Dye	Conc. (ul)	Range (bp)	Reference
Mu10	F: ATTCAGATTTCATCAGTTTGACA	60	FAM	0,50	108-132	Bellemain et al. 2004
	R: TCAGCATAGTTACACAAATCTCC					
Mu23	F: GCCTGTGTGCTATTTTATCC	60	NED	0,60	136-156	Bellemain et al. 2004
	R: TAGACCACCAAGGCATCAG					
Mu50	F: GTCTCTGTCATTTCCCCATC	60	FAM	0,40	76-102	Bellemain et al. 2004
	R: AACCTGGAACAAAAATTAACAC					
Mu51	F: AGCCAGAATCCTAAGAGACCT	60	HEX	0,60	105-129	Bellemain et al. 2004
	R: AAAGAGAAGGGACAGGAGGTA					
Mu59	F: GCTCCTTTGGGACATTGTAA	60	NED	0,50	90-122	Bellemain et al. 2004
	R: TGACTGTCACCAGCAGGAG					
G10L	F: ACTGATTTTATTCACATTTCCC	60	HEX	0,50	141-161	Bellemain et al. 2004
	R: GATACAGAAACCTACCCATGCG					
SRY	F: GAACGCATTCTTGGTGTGGTC	60	HEX	0,50	75	Taberlet <i>et al.</i> 1997
	R: TGATCTCTGAGTTTTGCATTTG					
G10B	F: GCCTTTTAATGTTCTGTTGAATTTG	58	FAM	0,22	130-152	Paetkau <i>et al</i> ., 1995
	R: GACAAATCACAGAAACCTCCATCC					
G10C	F: AAAGCAGAAGGCCTTGATTTCCTG	58	FAM	0,13	87-109	Paetkau <i>et al</i> ., 1995
	R: GGGACATAAACACCGAGACAGC					
G10D	F: GATCTGTGGGTTTATAGGTTACA	58	FAM	0,25	167-181	Paetkau <i>et al</i> ., 1995
	R: CTACTCTTCCTACTCTTTAAGAG					
G10J	F: GATCAGATATTTTCAGCTTT	52	HEX	0,18	73-103	Paetkau & Strobeck, 1994
	R: AACCCCTCACACTCCACTTC					
G10M	F: TTCCCCTCATCGTAGGTTGTA	52	FAM	0,35	202-218	Paetkau <i>et al</i> ., 1995
	R: GATCATGTGTTTCCAAATAAT					
G10P	F: AGTTTTACATAGGAGGAAGAA	58	HEX	0,15	141-173	Paetkau <i>et al</i> ., 1995
	R: TCATGTGGGGAAATACTCTGAA					
G10X	F: CCCTGGTAACCACAAATCTCT	58	NED	0,12	132-156	Paetkau <i>et al</i> ., 129 5
	R: TCAGTTATCTGTGAAAATCAAAA					

- Bayesian clustering method (Structure)
- Factorial correspondence analysis (Genetix)
- Pairwise F_{st} (Arleqiun)
- Genetic diversity measures A, H_o, H_e
 (Arleqiun)

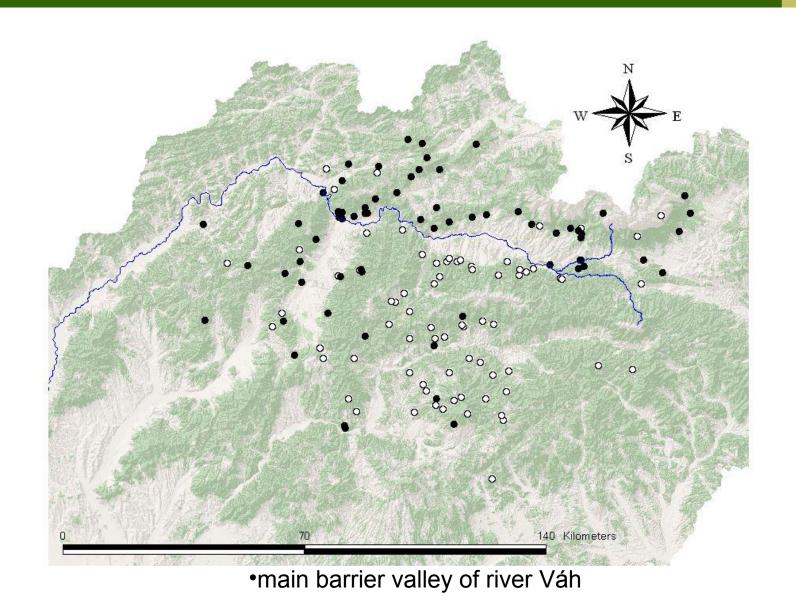


- 1 Northern Slovakia
- 2 Central Slovakia
- 3 Eastern Slovakia
- 4 Romania
- 5 Greece


Factorial correspondence analysis


Populations from Carpathians

- 1 Northern Slovakia
- 2 Central Slovakia
- 3 Eastern Slovakia
- 4 Romania

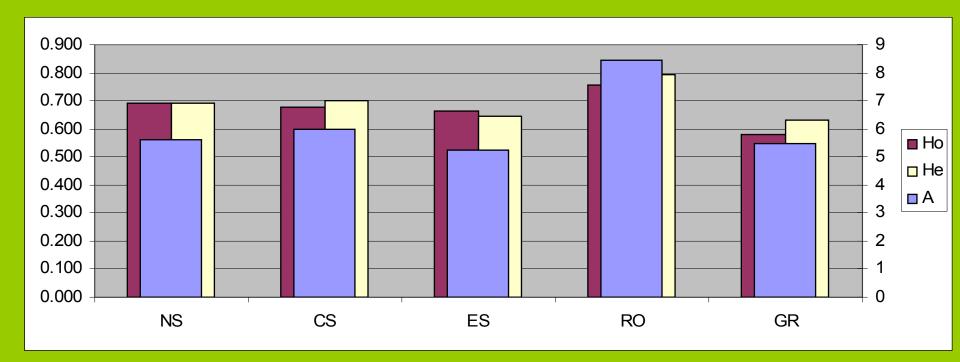


Factorial correspondence analysis – Carpathian populations

Distribution of clusters Northern Slovakia (yellow) and Central Slovakia (blue) in Western Carpathians

26

Results – pairwise *Fst*


	Northern Slovakia	Central Slovakia	Eastern Slovakia*	Romania	Greece
Northern Slovakia	0				
Central Slovakia	0.06203	0			
Eastern Slovakia*	0.18361	0.12716	0		
Romania	0.10828	0.09253	0.1006	0	
Greece	0.19942	0.21283	0.24553	0.13875	0

^{*)} results could be biased due to low sample size of Eastern Slovakia

Results – genetic diversity

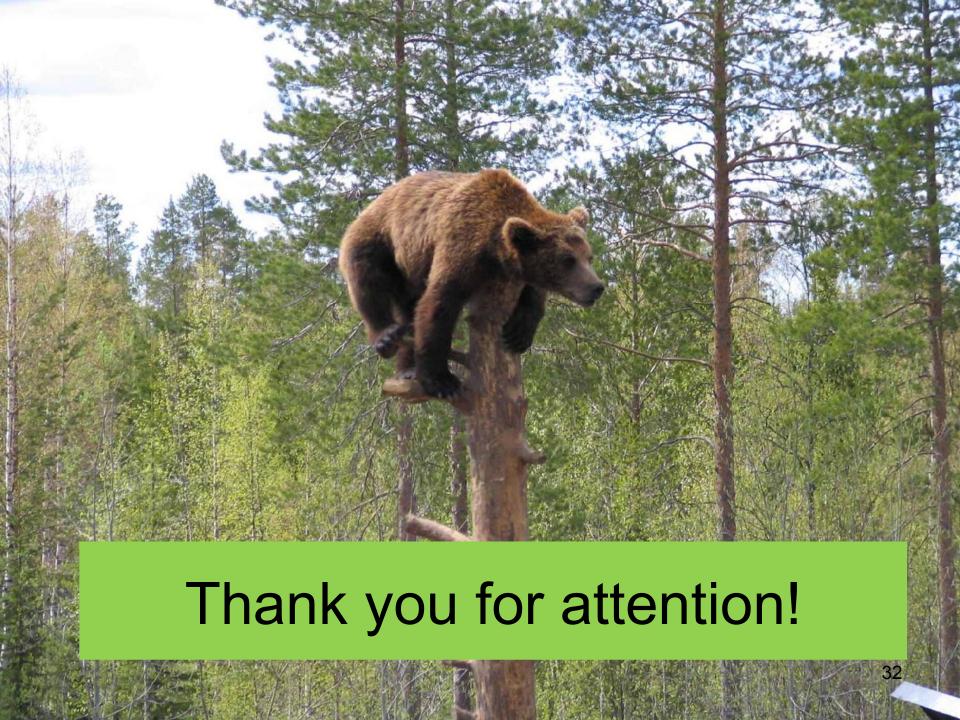
- the highest number of alelles and observed and expected heterozygosity found in Romanian population
- slightly lower heterozygosity in Western Carpathians, the lowest in Greece

Comparison of *He* with different populations (based on 7 loci)

Population	n	He
Romania	109	0.77
Kluane, Yukon	50	0.77
Scandinavia NS	108	0.70
Kuskokwim Range, Alaska	55	0.70
Scandinavia NN	29	0.69
Scandinavia S	156	0.68
Scandinavia M	88	0.66
Slovakia Central	78	0.65
Slovakia North	90	0.65
Slovakia East	16	0.63
Greece	123	0.57
Yellowstone	57	0.54
Kodiak Island	34	0.22

29

Conclusions



- populations from Western, Eastern Carpathians and Greece form 3 different clusters
- Carpathian bears are further subdivided into 4 clusters: Northern Slovakia, Central Slovakia, Eastern Slovakia, Romania
- Greek population the most differentiated
- population in Eastern Slovakia supported by gene flow from Ukraine and Romania

Conclusions

- population in Western Carpathians is formed by 2 different subpopulations – despite geographic proximity
- hypothesis they may have founded by two small isolated stocks which survived the radical decline of populations numbers at the beginning of 20th century
- genetic diversity in Carpathians relatively high, in Greece slightly lower

